Geskiedenis Podcasts

Reguleringstoerusting

Reguleringstoerusting

Toe 'n soldaat van die Britse leër beveel is om die vyand aan die Westelike Front aan te val, het hy altesaam 30 kilogram toerusting gedra. Dit sluit in 'n geweer, twee meulgranate, 220 rondtes ammunisie, 'n staalhelm, draadknipers, veldbedekking, verskansingsgereedskap, grootjas, twee sandsakke, opgerolde grondvel, waterbottel, rugsak, blikkie, handdoek, skeerkit, ekstra sokkies, boodskapboek en bewaarde voedselrantsoene. Die gewig van die toerusting het dit moeilik gemaak om baie vinnig oor Niemandsland te beweeg.

Ons moes twee dae se rantsoene neem, en die 150 rondtes ammunisie wat ons altyd saamneem. Ek het net 'n ekstra paar sokkies geneem, maar ek wou nog voor ek terugkom dat ek drie ekstra pare geneem het. Ons het ons wonderlike jasse gedra, met volledige toerusting bo -op hierdie. Ons pak ons ​​bo -op die pak. Ons waterbottel was vol en ons het natuurlik ons ​​gemorsblik gedra, ook 'n beker en eetgerei. Die een kombers wat ons mag neem, is in die grondlaken gerol en soos 'n perdekraag om ons nekke gehang. Ek het my sak primus en 'n blikkie paraffien, twee klein blikkies Heinz gebakte boontjies, vaseline, 'n tommie se oond en 'n blikkie vulsel bygedra; 'n paar handskoene, handskoene en 'n demper. Hierbenewens het ons ons geweer gedra. Ek wens jy kon ons gesien het. Ons het soos geanimeerde ou klerewinkels gelyk.

Ons fluit en sing die Marseillaise terwyl ons trap. Ek was gelaai met 'n pakkie (kombers, waterdigte laken, oorjas, twee broekies, twee onderbroeke, ses sakdoeke, twee handdoeke en verskeie boeke) 'n rugsak (kos, skeertoerusting, seep, tandepasta, sakveldmateriaal en kans en punte) ) verskansingsgereedskap en handvatsel om in te grawe; 'n groot waterbottel vol koue tee en my veldbril. En my woord dit was swaar loop! Dit is 'n optog.


Reguleringstoerusting - Geskiedenis

Werkers wat hul loopbane in gevaarlike omgewings deurbring, het deesdae toegang tot 'n wye verskeidenheid beskermende klere en toerusting om hulle veilig te hou. Van duursame helms tot pakke vir die hele liggaam, die reeks sogenaamde persoonlike beskermende toerusting (PPE) bevat byna alles wat nodig is om die veiligheid van werknemers op enige werksplek te verseker. Daar bestaan ​​geen twyfel dat hierdie tipe toerusting vir baie beroepe absoluut noodsaaklik is nie. Die werkende persoon van vandag staar gereeld gereeld roetine in die gesig. Konstruksieterreine lê vol voorwerpe wat dodelike beserings kan veroorsaak. Mediese laboratoriums bevat sensitiewe biologiese materiale wat ernstige siektes kan veroorsaak. Sekere industriële terreine het moontlik hitte-opwekkingstoerusting wat brandbare klere kan laat brand. Die lys van moontlike gevare duur voort, maar die regte toerusting en klere, plus 'n bietjie gesonde verstand, is gewoonlik genoeg om beserings te voorkom.

As verskaffer van hoogstaande werksuniforms sedert 1932, is Prudential Overall Supply trots op die rol wat dit gespeel het-en steeds speel-om werkers teen skade te beskerm. Dit is egter die moeite werd om in gedagte te hou dat die werkers nie altyd toegang tot hierdie soort kwaliteit beskermingsuitrusting kon kry nie. Die relatief veilige werksomgewing waarby so baie baat vind, is die gevolg van 'n lang geskiedenis van innovasies wat deur 'n aantal ondernemende individue ontwerp is. Kom ons kyk na die geskiedenis van persoonlike beskermende toerusting deur die ontwikkeling van sekere soorte veiligheidsuitrustings wat ons so gereeld as vanselfsprekend aanvaar, in kaart te bring.

Handskoene - Beskermende handskoene bestaan ​​al duisende jare lank. Trouens, hulle kry selfs melding by Homeros Odyssee, wat dateer uit die agtste eeu v.C. hierdie antieke gedig bevat 'n kort beskrywing van Laertes wat handskoene gebruik om sy hande teen dorings te beskerm terwyl hy in sy tuin werk. Die antieke Griekse historikus Xenophon skryf ook dat die Perse van sy tyd handskoene gedra het om hul hande teen die koue te beskerm.

Deur die eeue heen het handskoene ook 'n soort modeverklaring geword, begunstig deur koninklikes en ander vooraanstaande persone. Maar die gewone werker gebruik dit ook, byvoorbeeld, gedurende die Middeleeue sou messelaars skaapvelhandskoene dra wanneer hulle gevaarlike gereedskap of materiaal hanteer. Jagters het ook leerhandskoene gebruik. Deesdae word daar baie soorte handskoene op werkplekke gebruik, almal met die doel om die hande te beskerm teen die een of ander aard. Prudential verkoop verskillende soorte handskoene, waaronder fleecehandskoene wat isolasie bied in koue omgewings by www.shopprudentialuniforms.com.

Harde hoede Die idee om beskermende uitrustings te gebruik om jou kop teen harde voorwerpe te beskerm, is nie 'n nuwe idee nie, soos jy waarskynlik opgemerk het as jy ooit 'n film gesien het wat oorlogvoering in antieke of Middeleeue uitbeeld. Trouens, helms wat vir hierdie doel gebruik is, dateer uit die 10de eeu v.C. - en moontlik selfs voor. Maar eers in die 19de eeu kon werkende mense hoofdeksels gebruik om hul skedels teen gevaar te beskerm. Werkers op skeepsbouwerf werf die idee om teer op hul hoede te sit en dan in die son te laat droog word. Dit het 'n stewige, duursame hoed geskep wat hul koppe kan beskerm teen die gevaar wat deur voorwerpe val. Ongeveer dieselfde tyd het 'n brandweerman uit New York, genaamd Henry T. Gratacap, 'n helm bedink wat spesifiek bedoel was vir diegene in sy werk. Die basiese ontwerp van Gratacap oorleef tot vandag toe grotendeels ongeskonde in sy gekose beroep.

In 1898 het 'n sakeman uit Kalifornië, Edward Dickinson Bullard, begin om beskermende hoofdeksels van leer te verkoop. Sy besigheid het jare lank goed gevaar, totdat die uitbreek van die Eerste Wêreldoorlog hom 'n idee gegee het om sy leerhoede op te gradeer. Bullard se seun was 'n vegter in die Eerste Wêreldoorlog toe hy na sy toer na die VSA terugkeer, en hy bring die staalhelm saam wat hy as soldaat gedra het. Dit het Bullard 'n idee gegee: Waarom nie 'n soortgelyke hoofbedekking vir werkers op konstruksieterreine en verwante omgewings nie? Die sogenaamde 'harde hoed' is gebore.

Vandag is die harde hoed nodig op baie soorte werksplekke. Die produkreeks van Prudential bevat snapkappe en gesigmaskers wat ontwerp is om werknemers wat harde hoede dra, ekstra beskerming te bied. Dit is ook die moeite werd om daarop te wys dat sommige soorte hoofbedekkings meer kan doen as om net die kopbeen teen eksterne voorwerpe te beskerm. Sogenaamde "hoë sigbaarheid" -hoede help werknemers om veilig te bly in omgewings waar sig dikwels verduister word.

Veiligheidsbrille - Sweisers, laboratoriumwerkers en ander persone wat in gevaarlike omgewings werk, kan 'n veiligheidsbril bedank vir die beskerming van hul sig. Dit het egter 'n rukkie geneem voordat enigiemand die idee gekry het vir spesiale brille om die werkers se gesig teen eksterne bedreigings te beskerm. Terwyl brille wat al eeue lank gebruik is om swak sig te vergroot, al eeue lank bestaan, het die werklike veiligheids deurbraak gekom toe die Afro-Amerikaanse uitvinder Powell Johnson sy "oogbeskermers" in 1880 gepatenteer het. In die 20ste eeu het die vraag na hoë -kwaliteit oogbeskerming, aangesien individue in verskillende nywerhede 'n behoefte aan sulke toerusting gevind het. Dit het gelei tot verdere verfyning van die basiese ontwerp.

Deesdae kan 'n goeie veiligheidsbril dikwels 'n aantal waardevolle funksies verrig: die beskerming van die oë teen UV -strale, chemikalieë en ander gevare, asook die verbetering van die sig.

Onderklere - Hierdie tipe werkklere help om die veiligheid van personeel te verseker deur 'n deurlopende kledingoppervlak te bied wat baie soorte gevaarlike materiale, soos vorms en/of minerale, soos asbes, kan weerhou; dit kan ook die werker beskerm teen die skadelike gevolge van buitensporig hoë (of lae) temperature. Hierdie klere is geneig om gemaak te word van hoogs digte, maar buigsame materiale wat gevare weghou, terwyl die werknemer volle bewegingsvryheid toelaat.

In die 19de eeu het brandbestryders spesiale beskermende klere begin gebruik wat bedoel was om hulle te beskerm teen die verskillende gevare verbonde aan die beroep. Aanvanklik is woluniforms gebruik om 'n mate van beskerming teen ernstige hitte toestande te bied. Vir brandbestryders was die vordering traag, eers in die na-Tweede Wêreldoorlog het hul uniforms gestandaardiseer en onderhewig aan streng veiligheidstandaarde. Terwyl die brandbestryding hierdie veranderinge ondergaan het, het ander bedrywe die behoefte aan soortgelyke beskermende klere begin sien. Dit het gelei tot die ontwikkeling van beskermende overalls, wat vandag in baie variëteite beskikbaar is om aan die behoeftes van verskillende nywerhede te voldoen.


Wat is PPE? Voorkoming en regulering

Die geskiedenis van beskermende klere kan tot in die agtste eeu v.C. waar dit gedokumenteer is uit 'n antieke Griekse gedig "Homers Odyssey". Dit bevat 'n kort beskrywing van Laertes wat handskoene gebruik om sy hande teen dorings te beskerm terwyl hy in sy tuin werk. Die antieke Griekse historikus Xenophon skryf ook dat die Perse van sy tyd handskoene gedra het om hul hande teen die koue te beskerm.

Deur die eeue heen het handskoene 'n modeverklaring geword, begunstig deur koninklikes en ander vooraanstaande persone. Maar die gewone werker gebruik dit ook, byvoorbeeld, gedurende die Middeleeue sou messelaars skaapvelhandskoene dra wanneer hulle gevaarlike gereedskap of materiaal hanteer. Ook jagters het leerhandskoene gebruik. Daar is deesdae baie soorte handskoene wat op werkplekke gebruik word, almal met die doel om die hande te beskerm teen skade van die een of ander aard.

Die beskerming van die kop was ook uiters belangrik, veral in oorlogssituasies waar helms van baie verskillende tipes geskep is vir praktiese doeleindes en prominensie tydens die menslike oudheid. Die meeste vroeë helms het oorwegend militêre gebruike gehad, hoewel sommige moontlik meer seremoniële as gevegsverwante doeleindes gehad het. Die oudste gebruik van helms was deur Assiriese soldate in 900 vC, wat dik leer- of bronshelms gedra het om die kop te beskerm teen stomp voorwerp- en swaardhoue en pylaanvalle in die geveg. Helms wat vir hierdie doel gebruik is, dateer uit die 10de eeu vC - en moontlik selfs voorheen. Maar dit was eers in die 19de eeu dat werkende mense hoofdeksels kon gebruik om hul skedels teen gevaar te beskerm. Werkers op skeepsbouwerf werf die idee om teer op hul hoede te sit en dan in die son te laat droog word. Dit het 'n stewige, duursame hoed geskep wat hul koppe kan beskerm teen die gevaar wat deur voorwerpe val. Ongeveer dieselfde tyd het 'n brandweerman uit New York, genaamd Henry T. Gratacap, 'n helm bedink wat spesifiek bedoel was vir diegene in sy werk. Die basiese ontwerp van Gratacap oorleef tot vandag toe grotendeels ongeskonde in sy gekose beroep.

Kom meer te wete oor die verskillende tipes veiligheidshelm en die gebruik daarvan:

Edward Dickinson Bullard

In 1898 begin 'n sakeman in Kalifornië met die naam Edward Dickinson Bullard beskermende hoofdeksels van leer verkoop. Sy besigheid het jare lank goed gevaar, totdat die uitbreek van die Eerste Wêreldoorlog hom 'n idee gegee het om sy leerhoede op te gradeer. Bullard se seun was 'n vegter in die Eerste Wêreldoorlog, en toe hy na sy toer na die VSA terugkeer, het hy die staalhelm saamgebring wat hy as soldaat gedra het. Dit het Bullard 'n idee gegee: Waarom nie 'n soortgelyke hoofbedekking vir werkers op konstruksieterreine en verwante omgewings nie? Hiermee is die sogenaamde 'harde hoed' gebore.

Wat is PPE?

Persoonlike beskermende toerusting (PPE) verwys na beskermende klere, helms, bril of ander kledingstukke of toerusting wat ontwerp is om die liggaam van die draer te beskerm teen beserings of infeksies. Die gevare wat beskermende toerusting hanteer, sluit in fisiese, elektriese, hitte, chemikalieë, biogevare en deeltjies. Beskermende toerusting mag gedra word vir werksverwante beroepsveiligheids- en gesondheidsdoeleindes, sowel as vir sport en ander ontspanningsaktiwiteite. 'Beskermende klere' word toegepas op tradisionele kledingkategorieë, en 'beskermende uitrusting' is van toepassing op items soos pads, beskermings, skilde of maskers, asook ander items.

Die doel van persoonlike beskermende toerusting is om die blootstelling van werknemers aan gevare te verminder wanneer ingenieursbeheer en administratiewe beheermaatreëls nie haalbaar of effektief is om hierdie risiko's tot aanvaarbare vlakke te verminder nie. PBM is nodig as daar gevare is. PPE het die ernstige beperking dat dit nie die gevaar by die bron uitskakel nie en kan veroorsaak dat werknemers blootgestel word aan die gevaar as die toerusting misluk.

Elke item van PBM lê 'n versperring tussen die draer/gebruiker en die werksomgewing. Dit kan addisionele spanning op die draer veroorsaak, wat hul vermoë om hul werk te verrig, benadeel en aansienlike ongemak veroorsaak. Elkeen hiervan kan draers ontmoedig om PBM korrek te gebruik, wat die risiko van besering, swak gesondheid of, onder uiterste omstandighede, kan veroorsaak. 'N Goeie ergonomiese ontwerp kan help om hierdie hindernisse tot 'n minimum te beperk en kan dus help om veilige en gesonde werksomstandighede te verseker deur die korrekte gebruik van PBM.

Goeie praktyke

Beroepsveiligheid en -gesondheid kan gevarenbeheer en ingrypings gebruik om gevare op die werkplek te verminder, wat 'n bedreiging vir die veiligheid en lewensgehalte van werknemers inhou. Die hiërargie van gevare -beheermaatreëls bied 'n beleidsraamwerk wat die tipes gevarenbeheer in terme van absolute risikovermindering rangskik. Bo -aan die hiërargie is eliminasie en substitusie, wat die gevaar heeltemal verwyder of die gevaar met 'n veiliger alternatief vervang. As eliminasie- of substitusiemaatreëls nie van toepassing kan wees nie, word ingenieursbeheer en administratiewe beheermaatreëls, wat daarop gemik is om veiliger meganismes te ontwerp en veiliger menslike gedrag af te rig, geïmplementeer. Persoonlike beskermende toerusting is die laaste op die rangorde van kontroles, aangesien die werkers gereeld blootgestel word aan die gevaar, met 'n beskermingshindernis. Die hiërargie van kontroles is belangrik om te erken dat, hoewel persoonlike beskermende toerusting uiters nuttig is, dit nie die gewenste beheermeganisme is ten opsigte van veiligheid van werknemers nie.

"PPE het die ernstige beperking dat dit nie die gevaar by die bron uitskakel nie en kan veroorsaak dat werknemers blootgestel word aan die gevaar as die toerusting misluk."

Voorbeelde van PPE sluit oorkappe, respirators, gesigmaskers, harde hoede, handskoene, voorskote en beskermende bril in. PPE beperk blootstelling aan die skadelike gevolge van 'n gevaar, maar slegs as werkers die PPE korrek dra en gebruik.

Administratiewe kontroles en PPE moet slegs gebruik word:

  • As daar geen ander praktiese beheermaatreëls beskikbaar is nie (as 'n laaste uitweg)
  • As 'n tussentydse maatreël totdat 'n meer effektiewe manier om die risiko te beheer, gebruik kan word
  • Om aanvullende beheermaatreëls aan te vul (as 'n rugsteun)
  • As 'n laaste uitweg, waar daar geen ander praktiese beheermaatreëls beskikbaar is nie
  • Om 'n korttermynmaatreël te wees totdat 'n meer effektiewe manier om die risiko te beheer, gebruik kan word
  • Saam met ander beheermaatreëls soos plaaslike uitlaatventilasie
  • Op sigself tydens onderhoudsaktiwiteite

'Die eerste vraag wat gevra word, is: kan die gevaar by die bron uitgeskakel word, soos veiligheid in ontwerp?'

Daar kan egter spesifieke PPE -vereistes wees vir die werk met skadelike stowwe of vir sekere werkaktiwiteite soos asbes en/of aansteeklike siektes. Vir enige spesifieke gevaar kan meer as een beheermaatreël nodig wees om die risiko op te los. Om die risiko van blootstelling aan 'n giftige chemikalie te beheer, kan byvoorbeeld die installering van 'n ventilasiestelsel vereis en 'n voorkomende instandhoudingsprogram vir die ventilasiestelsel opstel en die gebruik van waarskuwingstekens en die gebruik van PBM. As u beskerm teen blootstelling aan 'n stof soos 'n gevaarlike chemiese stof of 'n biologiese stof, moet u oorweeg hoe die stof die liggaam kan binnedring. Byvoorbeeld, waar 'n chemiese middel deur die longe en die vel geabsorbeer kan word, is velbeskerming sowel as asemhalingsbeskerming nodig.

Dit is noodsaaklik om 'n veilige werksisteem te hê, en dit beklemtoon die sakevoor veiligheid. Die belegging in werk, gesondheid en veiligheid moet 'n strategiese in ag neem. Die Hiërargie van Risikobeheer gebruik 'n metode van top -down bestuur. Deur die voorkeur te gee aan metodes om hoër risiko te beheer wat spesifiek verband hou met die moontlike gevare, sorg dit vir 'n veiliger werkplek en is dit die belegging in veiligheid wat nodig is om 'n situasie aan te dui waarin elke party op 'n manier beter produktiwiteit en veiliger werkers baat.

Die eerste vraag wat in die toekoms gestel word, is dus: 'Kan die gevaar by die bron uitgeskakel word, soos veiligheid in ontwerp?' Indien wel, is die probleem opgelos. As dit nie die geval is nie, begin dan op die lys en kwalifiseer u antwoord deur te verseker dat die regte kontroles geïdentifiseer is. Senior bestuur en alle werkers wat deur die veranderinge geraak word, moet geraadpleeg word en hul insette gevra word. Dit sal toesig tot die minimum beperk en die ondersteuning en aanvaarding van die veranderinge vergroot, en dit kan ook lei tot groter werkerstevredenheid en uiteindelik tot 'n wen -wen -situasie vir almal lei.


Reëlgeskiedenis

In 1990 het die Wet op Oliebesoedeling die Wet op Skoon Water gewysig om 'n paar opbergingsgeriewe te vereis om fasiliteite se reaksieplanne op te stel. Op 1 Julie 1994 het EPA die hersienings afgehandel wat eienaars of operateurs van fasiliteite opdrag gee om planne voor te berei en voor te lê vir reaksie op die ergste afvoer van olie (subdeel D).

Na die oliestorting in Floreffe, Pennsylvania, het EPA die Task Force van die SPCC gestig om federale regulasies vir oliestorting uit bogrondse opgaartenks te ondersoek. Die SPCC Task Force het EPA aanbeveel:

  • verduidelik sekere bepalings in die regulasie vir die voorkoming van oliebesoedeling,
  • stel bykomende tegniese vereistes vir gereguleerde fasiliteite, en
  • vereis die opstel van fasiliteitspesifieke reaksieplanne.

In reaksie op die aanbeveling van die Task Force het EPA in die negentigerjare hersienings aan die regulasie vir die voorkoming van oliebesoedeling voorgestel en die wysigings in 2002 afgehandel. spesifieke regulatoriese vereistes.


'N Geskiedenis van regulering van mediese toestelle en toesig in die Verenigde State

Die Food and Drug Administration (FDA) is die oudste omvattende verbruikersbeskermingsagentskap in die Verenigde State. Die FDA se toesig oor voedsel en dwelms het in 1906 begin toe president Theodore Roosevelt die wet op suiwer voedsel en dwelms onderteken het. Sedertdien het die Kongres die rol van die FDA uitgebrei in die beskerming en bevordering van die ontwikkeling van menslike en veeartsenykundige middels, biologiese produkte, mediese toerusting en produkte wat straling uitstraal, voedsel van mense en diere en skoonheidsmiddels.

In die 1960's en 1970's het die kongres gereageer op die begeerte van die publiek om meer toesig te hou oor mediese toestelle deur die wysigings van mediese toestelle deur te gee aan die Federal Food, Drug and Cosmetic Act. In 1982 het die organisasie-eenhede by die FDA wat mediese toerusting en produkte wat straling uitstraal, gereguleer, saamgesmelt tot die Center for Devices and Radiological Health (CDRH).

Die chronologie hieronder beklemtoon mylpale in die geskiedenis van wetgewing oor mediese toestelle in die Verenigde State. Vir meer inligting, sien die teks van die individuele wette.


Verwysings en verdere lees

Aldrich, Mark. Veiligheid in die eerste plek: tegnologie, arbeid en besigheid in die bou van werksveiligheid, 1870-1939. Baltimore: Johns Hopkins University Press, 1997.

Aldrich, Mark. Die onnodige gevaar van die steenkoolmyn ’: die Buro vir Mynwese en die veldtog teen ontploffings van die steenkoolmyn, 1910-1940. ” Tegnologie en kultuur 36, nee. 3 (1995): 483-518.

Aldrich, Mark. “ Die gevaar van die gebroke spoor: die draers, die staalondernemings en spoortegnologie, 1900-1945. ” Tegnologie en kultuur 40, nee. 2 (1999): 263-291

Aldrich, Mark. “ Treinongelukke tot tyfus: die ontwikkeling van spoorweggeneeskundige organisasies, 1850 -Eerste Wêreldoorlog. ” Bulletin of the History of Medicine, 75, nee. 2 (Somer 2001): 254-89.

Derickson Alan. “ Deelnemende regulering van gevaarlike werksomstandighede: veiligheidskomitees van die United Mine Workers of America, ” Labor Studies Journal 18, nee. 2 (1993): 25-38.

Dix, Keith. Werkverhoudinge in die steenkoolbedryf: die handlaai -tydperk. Morgantown: University of West Virginia Press, 1977. Die beste bespreking van steenkoolmynwerk vir hierdie tydperk.

Dix, Keith. Wat 'n steenkoolmyner te doen is? Pittsburgh: University of Pittsburgh Press, 1988. Die beste bespreking van steenkoolmynarbeid gedurende die era van meganisasie.

Fairris, David. “ Vanuit uitgang na stem in Shopfloor Governance: die saak van vakbonde. ” Besigheidsgeskiedenisoorsig 69, nee. 4 (1995): 494-529.

Fairris, David. “Institusionele verandering in bestuur van winkelvloere en die baan van naoorlogse beseringspryse in Amerikaanse vervaardiging, 1946-1970. ” Oorsig van nywerheids- en arbeidsverhoudinge 51, nee. 2 (1998): 187-203.

Visrug, prys. Sagte steenkool Harde keuses: Die ekonomiese welsyn van bitumineuse steenkoolmynwerkers, 1890-1930. New York: Oxford University Press, 1992. Die beste ekonomiese ontleding van die arbeidsmark vir steenkoolmynwerkers.

Fishback, Price en Shawn Kantor. 'N Voorspel tot die welsynstaat: die oorsprong van werkers en vergoeding#8217. Chicago: University of Chicago Press, 2000. Die beste besprekings oor hoe werkgewers ’ aanspreeklikheidsreëls gewerk het.

Graebner, William. Steenkoolmynveiligheid in die progressiewe tydperk. Lexington: University of Kentucky Press, 1976.

Raad van Handel van Groot -Brittanje. Algemene verslag oor die ongelukke wat gedurende die jaar 1901 op die spoorweë van die Verenigde Koninkryk plaasgevind het. Londen, HMSO, 1902.

Hoofinspekteur van myne van die binnelandse kantoor van Groot -Brittanje. Algemene verslag met statistiek vir 1914, deel I. Londen: HMSO, 1915.

Hounshell, David. Van die Amerikaanse stelsel tot massaproduksie, 1800-1932: Die ontwikkeling van vervaardigingstegnologie in die Verenigde State. Baltimore: Johns Hopkins University Press, 1984.

Humphrey, H. B. “ Historiese opsomming van ontploffings in steenkoolmyn in die Verenigde State — 1810-1958. ” Bulletin van die United States Bureau of Mines 586 (1960).

Kirkland, Edward. Mans, stede en vervoer. 2 vols. Cambridge: Harvard University Press, 1948, Bespreek spoorwegregulering en veiligheid in New England.

Lankton, Larry. Cradle to Grave: Life, Work, and Death in Michigan Copper Mines. New York: Oxford University Press, 1991.

Licht, Walter. Werk by die Spoorweg. Princeton: Princeton University Press, 1983.

Lank, Priscilla. Waar die son nooit skyn nie. New York: Paragon, 1989. Dek die veiligheid van steenkoolmyn aan die einde van die negentiende eeu.

Mendeloff, John. Veiligheidsregulering: 'n Ekonomiese en politieke ontleding van die beleid oor beroepsveiligheid en gesondheid. Cambridge: MIT Press, 1979. 'n Toeganklike moderne bespreking van veiligheid onder OSHA.

Nasionale Akademie vir Wetenskappe. Op pad na veiliger ondergrondse steenkoolmyne. Washington, DC: NAS, 1982.

Rogers, Donald. Van gemeenskaplike reg tot fabriekswette: die transformasie van die wet op veiligheid op die werkplek in Wisconsin voor progressivisme. ” American Journal of Legal History (1995): 177-213.

Root, Norman en Daley, Judy. Is vroue veiliger werkers? 'N Nuwe blik op die data. ” Maandelikse Arbeidsoorsig 103, nr. 9 (1980): 3-10.

Rosenberg, Nathan. Tegnologie en Amerikaanse ekonomiese groei. New York: Harper and Row, 1972. Ontleed die kragte wat Amerikaanse tegnologie vorm.

Rosner, David en Gerald Markowity, redakteurs. Sterf vir werk. Blomington: Indiana University Press, 1987.

Shaw, Robert. Afremme: 'n Geskiedenis van spoorwegongelukke, veiligheidsmaatreëls en werkspraktyke in die Verenigde State van Amerika. Londen: P. R. Macmillan. 1961.

Trachenberg, Alexander. Die geskiedenis van wetgewing vir die beskerming van steenkoolmynwerkers in Pennsylvania, 1824 – 1915. New York: Internasionale uitgewers. 1942.

Amerikaanse Departement van Handel, Buro vir die Sensus. Historiese statistieke van die Verenigde State, Colonial Times tot 1970. Washington, DC, 1975.

Usselman, Steven. Lugremme vir goederetreine: tegnologiese innovasie in die Amerikaanse spoorwegbedryf, 1869-1900. ” Besigheidsgeskiedenisoorsig 58 (1984): 30-50.

Viscusi, W. Kip. Risiko deur keuse: regulering van gesondheid en veiligheid op die werkplek. Cambridge: Harvard University Press, 1983. Die mees leesbare behandeling van moderne veiligheidskwessies deur 'n toonaangewende geleerde.

Wallace, Anthony. Saint Clair. New York: Alfred A. Knopf, 1987. Bied 'n uitstekende bespreking van vroeë antrasietmynbou en veiligheid.

Whaples, Robert en David Buffum. “Faternalisme, paternalisme, die gesin en die mark: versekering 'n eeu gelede. ” Sosiale Wetenskap Geskiedenis 15 (1991): 97-122.

Wit, John. Die Amerikaanse spoorwegvragmotor. Baltimore: Johns Hopkins University Press, 1993. Die definitiewe geskiedenis van vragmotortegnologie.

Witkant, James. Gevaarregulering: die stryd om mynveiligheid in die steenkoolbedryf in die Rocky Mountain. Lincoln: University of Nebraska Press, 1990.

Wokutch, Richard. Werkersbeskerming Japanse styl: beroepsveiligheid en gesondheid in die motorbedryf. Ithaca, NY: ILR, 1992

Worrall, John, redakteur. Veiligheid en die arbeidsmag: aansporings en belemmerings by werkers en vergoeding#8217. Ithaca, NY: ILR Press, 1983.

1 Beserings of sterftes word uitgedruk as tariewe. Byvoorbeeld, as tien werkers beseer word uit 450 werkers gedurende 'n jaar, sal die koers 0,006666 wees. Vir leesbaarheid kan dit uitgedruk word as 6,67 per duisend of 666,7 per honderdduisend werkers. Tariewe kan ook per miljoen werksure uitgedruk word. As die gemiddelde werkjaar dus 2000 uur is, lei tien beserings by 450 werknemers tot [10/450 �] x1,000,000 = 11,1 beserings per miljoen ure gewerk.

2 Raadpleeg die Amerikaanse departement van handel vir statistieke oor werkbeserings van 1922-1970, Historiese statistieke, Reeks 1029-1036. Vir vroeëre data is in Aldrich, Veiligheid eerste, Bylaag 1-3.

3 Hounshell, Amerikaanse stelsel. Rosenberg, Tegnologie,. Aldrich, Veiligheid eerste.

4 Sien Fishback en Kantor oor die werking van die werkgewer se aanspreeklikheidstelsel. 'N Voorspel, hoofstuk 2

5 Dix, Werkverhoudinge, en syne Wat 'n steenkoolmyner te doen is? Wallace, Saint Clair, is 'n uitstekende bespreking van vroeë antrasietmynbou en veiligheid. Lank, Waar die son, Visrug, Sagte steenkool, hoofstukke 1, 2 en 7. Humphrey, “ Historiese opsomming. ” Aldrich, Veiligheid eerste, hoofstuk 2.

6 Aldrich, Veiligheid eerste hoofstuk 1.

7 Aldrich, Veiligheid eerste hoofstuk 3

8 Fishback en Kantor, 'N Voorspel, hoofstuk 3, bespreek hoër salarisse vir riskante werksgeleenthede sowel as werkersbesparing en ongeluksversekering Sien ook Whaples en Buffum, “Fernalisme, paternalisme. ” Aldrich, ” Treinongelukke na tyfuskoorts. ”

9 Kirkland, Mans, stede. Trachenberg, Die geskiedenis van wetgewing Witkant, Gevaarregulering. 'N Vroeë bespreking van fabriekswetgewing is in Susan Kingsbury, red., Xxxxx. Rogers, ” Uit die gemenereg. ”

10 Oor die ontwikkeling van vragmotortegnologie, sien White, Amerikaanse spoorwegvragmotor, Usselman “Luchtremme vir goederetreine, ” en Aldrich, Veiligheid eerste, hoofstuk 1. Shaw, Af remme, bespreek oorsake van treinongelukke.

11 Besonderhede van hierdie regulasies kan gevind word in Aldrich, Safety First, hoofstuk 5.

12 Graebner, Steenkoolmynveiligheid, Aldrich, “ ‘The Needless Peril. ”

13 Oor die oorsprong van hierdie wette, sien Fishback en Kantor, 'N Voorspel, en die bronne wat daarin aangehaal word.

14 Vir 'n beoordeling van die impak van wette op vroeë vergoeding, sien Aldrich, Veiligheid eerste, hoofstuk 5 en Fishback en Kantor, 'N Voorspel, hoofstuk 3. Vergoeding in die moderne ekonomie word bespreek in Worrall, Veiligheid en die arbeidsmag. Regering en ander wetenskaplike werk wat veiligheid op spoorweë en in steenkoolmynbou bevorder, word bespreek in Aldrich, “ ‘ The Needless Peril ’, ” en “The Broken Rail. ”

15 Farris, “ Vanuit uitgang na stem. ”

16 Aldrich, “ ‘Noodless Peril, ” en Humphrey

17 Derickson, “Participative Regulation ” en Fairris, “Institusionele verandering, ” beklemtoon ook die rol van vakbond- en winkelvloerkwessies in die vorming van veiligheid gedurende hierdie jare. Baie van die moderne literatuur oor veiligheid is hoogs kwantitatief. Vir leesbare besprekings, sien Mendeloff, Regulering van veiligheid (Cambridge: MIT Press, 1979), en


Die doel van die spel

Die teenstander moet probeer keer dat die bal weerkaats voordat hy die bal terugstuur. Die wedstryde word in die beste van 3 of 5 stelle gespeel, en die span met die meeste stelle aan die einde van die wedstryd wen.

In die reëls en regulasies vir vlugbal het elke span 6 spelers op dieselfde tyd. Plaasvervangers kan regdeur die spel gebruik word. Daar is geen professionele gemengde geslagsgroepe nie.

Elke speler beklee 'n posisie in die aanvalsone (langs die rooster) of in die verdedigingsgebied (agter die baan). Drie spelers is in elke sone en draai na elke punt met die kloksgewys.

Die grond het 'n reghoekige vorm en 'n afmeting van 18m x 9m. Deur die veld loop 'n net met 'n hoogte van 2,43 m. Die bal met 'n deursnee moet 8 duim en 'n massa tussen 9 en 10 onse hê.

Rondom die kontoer van die veld is daar 'n gebied buite die veld, en as die bal in hierdie afdelings weerspieël sou word, sou die punt aan die teenstander toegeken word.

Elke span ontvang tot twee keer per per stel vir 30 sekondes elk. Na elke stel word die aantal time -out -oorskrydings na twee herstel, ongeag hoeveel daarvan voorheen gebruik is.


Stokke, klubs en kolwe

Alexander Rutherford word toegeskryf aan die skepping van die eerste hokkiestok, wat in 1852 naby die stad Lindsay, Ontario, gesny is. Stokke het oorspronklik plat lemme gehad, maar tussen 1957 en 1980 het geboë lemme meer algemeen geword.

Voor die 16de eeu het gholfspelers dikwels hul eie klubs gemaak, gewoonlik uit hout. Koning James IV van Engeland het William Mayne vir hom 'n stel klubs laat maak, aangesien Mayne se klubs ontwerp was vir langer houe, medium skote en skote naby die gat. Volgens die GolfClubRevue -webwerf is dit die oorsprong van die gholfklubstel. In die 1800's het dit makliker geword om ysterstawe te maak, aangesien dit in massa vervaardig kon word. Vandag beskik gholfstokke oor tegnologies gevorderde bestuurders, ysters en putters.

Vroeë bofbalvlermuise was redelik swaar en het 'n dikker handvatsel as die vlermuise wat vandag gebruik word. In 1865 is daar ooreengekom dat vlermuise van as of hickory gemaak moes word. Drie jaar later is regulasies ingestel dat 'n vlermuis nie meer as 42 sentimeter lank mag wees nie. Die maksimum dikte van die vlermuis, 2 en 3/4 duim, is in 1895 beslis en is vandag nog steeds die reël in die MLB.


100 jaar geskiedenis van respiratoriese beskerming

In 1919 het die Amerikaanse Buro vir Mynwese (USBM) die eerste respiratoriese sertifiseringsprogram begin. 'N Paar maande later, op 15 Januarie 1920, het hierdie federale liggaam die eerste respirator gesertifiseer. Om die belangrike mylpale van die afgelope 100 jaar te erken, dokumenteer hierdie webblad 'n algemene historiese oorsig van navorsing oor respiratoriese beskerming en die ontwikkeling van die sertifiseringsprogram soos deur die Amerikaanse federale regering onderneem.

Geskiedenis van respiratoriese beskerming Voor die 1800's

Pliny the Elder, foto met vergunning van Shutterstock

Regoor die wêreld het wetenskaplike geeste die behoefte aan respiratoriese beskerming erken lank voor die Amerikaanse Buro vir Mynwese. Die geskiedenis van respiratoriese beskerming strek tot in Plinius die Ouere (23-79 nC), 'n Romeinse filosoof en natuurkundige, wat los velle van blaasblare gebruik het om stof te filter om nie ingeasem te word nie, terwyl hy cinnabar verpletter, wat 'n giftige kwik is. sulfiedmineraal wat destyds gebruik is vir pigmentasie in versierings. Many centuries later, Leonardo da Vinci (1452-1519) recommended the use of wet cloths over the mouth and nose as a form of protection against inhaling harmful agents (Spelce et al., &ldquoHistory,&rdquo 2018 Cohen and Birkner, 2012).

Further scientific inquiry and discovery led to the use of early atmosphere-supplying respirators. While ancient divers used hoses and tubes for supplied air, seventeenth century scientists added bellows to these devices as a way of providing positive pressure breathing. Although science has made advancements over time, the need for proper respiratory protection became increasingly apparent. In the 1700s, Bernadino Ramazzini, known as the father of occupational medicine, described the inadequacy of respiratory protection against the hazards of arsenic, gypsum, lime, tobacco, and silica (Spelce et al., &ldquoHistory,&rdquo 2018 Cohen and Birkner, 2012).

While these scientific discoveries and advancements to respiratory protection were pivotal, the most important date for respiratory protection was still to come.

Nealy Smoke Mask from The National Fireman's Journal December 8, 1877

The 18 th and 19 th centuries achieved the development of what we would recognize today as respirators, far surpassing the use of animal bladders and wet cloths. In 1827, the Scottish botanist Robert Brown discovered the phenomenon known as the Brownian movement &ndash the theory that collisions of rapidly moving gas molecules causes the random bouncing motion of extremely small particles. Understanding the behavior of small particles, the properties of filter media and their interactions led to the first particulate respirator. In the mid-1800s, German scientists conducted studies with industrial dust and bacteria and their relationship with respiratory health. In 1877, the English invented and patented the Nealy Smoke Mask. The Nealy Smoke Mask used a series of water-saturated sponges and a bag of water attached to a neck strap. The wearer could squeeze the bag of water to re-saturate the sponges to filter out some of the smoke. (Coffey, 2016 Cohen and Birkner, 2012 Kloos, 1963).

On July 1, 1910, the U.S. Department of the Interior established the United States Bureau of Mines (USBM). The USBM worked to address the high fatality rate of mineworkers. In 1919, the USBM initiated the first respirator certification program in the United States. In 1920, MSA Safety Company manufactured the Gibbs respirator. This closed-circuit self-contained breathing apparatus (SCBA) operated on compressed oxygen and a soda lime scrubber to remove carbon dioxide. (Spelce et al., 2017). According to MSA Safety Company, industries, fire departments, and health departments were the first to utilize the Gibbs Breathing Apparatus (WebApps.MSANet.com). The U.S. Navy requested a respirator comparable to those used for emergency escape purposes for mineworkers, leading to the invention of the Gibbs breathing apparatus, named for United States Bureau of Mines engineer and inventor W.E. Gibbs. Gibbs also created a respirator specifically for aviators (Spelce, et al., 2017).

World War I presented a new kind of threat to soldiers &ndash chemical warfare gases, such as chlorine, phosgene, and mustard gas. The U.S. War Department asked the USBM to develop gas mask standards. Military equipment at the time did not account for protective masks or respirators. Combat equipment did not include respirators until World War II (Caretti, 2018). As a result, chemical warfare in WWI accounted for 1.3 million casualties and approximately 90,000 fatalities. This amounted to about 30% of all casualties during the war (Fitzgerald, 2008).

World War I respiratory protection, photo courtesy of Shutterstock

Additionally, WWI troops from all over the world helped a new influenza virus spread. The lack of vaccines and respiratory protection contributed to high fatalities from the flu virus. The U.S. reported the first flu symptoms in March 1918. In October of 1918 alone, the flu virus killed 195,000 Americans resulting in the San Francisco Board of Health recommending the use of masks in public spaces. The pandemic flu began to decline in early 1919. The flu caused approximately 50 million deaths across the world, including 675,000 in the United States (&ldquo1918 Pandemic,&rdquo 2018). The spread of the pandemic flu at this time displayed the need of additional respiratory protection and research needed in healthcare settings.

While the flu pandemic exhibited a need for healthcare respiratory protection, researchers at the time still largely focused on the respiratory protection of mining. On March 5, 1919, the USBM produced Schedule 13, &ldquoProcedure for Establishing a List of Permissible Self-Contained Oxygen Breathing Apparatus.&rdquo Schedule 13 set the first set of regulations for human testing of protection of self-contained breath apparatus respirators and certification thereof (Kyriazi, 1999). Finally, on January 15, 1920 the USBM certified the first respirator, the Gibbs breathing apparatus. (Spelce et al., &ldquoHistory,&rdquo 2018 Cohen and Birkner, 2012). The Gibbs breathing apparatus, originally designed for mine work, became the first approved respirator for industrial work. (Spelce, et al., 2017).

Gibb&rsquos Breathing Apparatus

During World War I, the U.S. government sought improvements for respiratory protection across several industries as well as the military. The passing of the Overman Act of May 20, 1918 by President Wilson gave authority for the Army to lead the research efforts in respiratory protection in order to engage in chemical warfare and defense. However, this delegation of research power was short-lived, and the USBM regained the primary task of mine safety research. (Spelce, et al., 2017).

The USBM developed Schedule 14 shortly after for the certification of military-use gas masks. Over time, the USBM altered Schedule 14, &ldquoProcedure for Establishing a List of Permissible Gas Masks,&rdquo several times. Initial modifications to it included acknowledgement of the 1941 USBM &ldquoFacepiece Tightness Test&rdquo which tested the detectable leakages and freedom of movement of the user (Spelce, et al., &ldquoHistory&rdquo (Cont.), 2018).

Because of the horrific casualties of WWI from chemical warfare, armed forces on both sides of the battlefield refrained from using chemical agents during WWII. Both sides shared the paranoia that the enemy had more harmful chemical warfare agents (Chauhan, 2008). As the world entered World War II, the U.S. Navy&rsquos use of asbestos increased for insulation purposes for pipes in naval vessels. It was not until 1939 that a Medical Officer for the U.S. Navy recognized the need for crew to wear respirators when cutting and wetting amosite and other asbestos containing insulation. Later, as the U.S. entered World War II, Fleischer et al. released a study acknowledging the dangers and risks of dust exposures in asbestos insulation manufacturing. However, even after the publication of the Fleischer et al. study in 1946, the U.S. Navy continued to use asbestos with the additional warning that &ldquoexposure to asbestos dust is a hazard which cannot be overlooked in maintaining an effective occupational-hygiene program.&rdquo The Navy continued to recommend confinement of pipe covering operations, and the use of respirators and ventilation (Barlow et al., 2017).

1930s Mask, photo courtesy of Caretti

In the early 1930s, the Hawk&rsquos Nest Tunnel disaster occurred in West Virginia. The estimated death toll, one of the worst in American industrial history, ranges from roughly 700-1,000 deaths of the 3,000 who worked underground. The tragedy of this disaster expedited the publication of the USBM&rsquos first approval of dust/fume/mist respirator approval standards in 30 CFR Part 14, Schedule 21 (USBM 1934). &ldquoThe USBM had already developed standards for and approved oxygen breathing apparatus (1919), gas mask respirators (1919), and hose mask respirators (1927). By 1937, the Bureau expanded its schedule for testing hose masks to include a variety of supplied-air respirators including Type CE abrasive blasting respirator&rdquo (Spelce, et al., 2019). Schedule 21 describes several types of respirators, including Type A, B, C, combinations of A-C, and D (Spelce, et al., 2019). The original Schedule 21 from 1934 included the following requirements:

  • Exhalation valves were required, and inhalation valves were optional
  • Added Pressure-Tightness Tests to assess the fitting characteristics of the respirator
  • Revised the Direct Leakage and Man Test (coal dust test) by eliminating work exercises
  • The high concentration silica dust defined the test period as one 90-minute test, not three 30-minute test periods
  • Eliminated the low concentration Silica Dust Test
  • Water Silica Mist and Chromic Acid Mist Tests defined the sampling period after 156 minutes and after 312 minutes, respectively
  • Added a Lead Dust Test
  • Eliminated the Lead Paint Test

Revisions to Schedule 21 expanded in 1955 under 30 CFR 14 to include the approval respirators with single use filters and reusable filters. Among these, there are two classes of respirators, including approval for protection against Pneumoconiosis and approval against dust that were not more toxic than lead. These approvals expanded to also included protection against lead fumes, silica, and chromic acid mists (Spelce, et al., 2019).

The USBM began to set stricter regulations on respirators during WWII. It established &ldquocertain basic requirements applicable to all types of respiratory equipment. These requirements are as follows: (1) They must give adequate protection (2) they must be reasonably comfortable and physically convenient to wear (3) they must provide an acceptable period of protection and (4) they must be constructed of durable materials. (IC 7130, August 1940, page 5)&rdquo (Spelce et al., 2018 D&rsquoAlessandro, 2018). The regulation of respiratory protection permitted the standardization of higher quality respiratory protection.

After WWII and the use of chemical gas in warfare, researchers continued their work on improving respiratory protection for soldiers. The events of World War II and the boom of industry on the home front exhibited a need for improved respiratory protection in industry. Americans on the home front went to work on the production lines to aid the war effort, ushering in a booming era of industry and manufacturing. However, those workers inhaled high amounts of asbestos due to poorly regulated working conditions. Early accounts from turn of the century industrial hygienists documented the dangers of airborne asbestos in working environments, but it was not until the mid-1950s that prolonged exposure to asbestos caused widespread concern. Research efforts still did not fully serve this need until even later, in the 1960s and 1970s. &ldquoWith the introduction of the membrane filter sampling method in the late 1960s and early 1970s, asbestos sampling and exposure assessment capabilities advanced to a degree which allowed industrial hygienists to more precisely characterize the exposure&ndashresponse relationship&rdquo (Barlow et al., 2017).

Non-combatant mask, circa 1940, photo courtesy of Caretti

Researchers performed tests on respirators to measure protection, but their levels of protection were unregulated. There was not yet a system in place to set a threshold standard of protection nor any regulatory body in the manufacturing of respirators. The respirators used in different settings, such as in construction or commercial farming, lacked regulation to ensure necessary protection against the airborne hazards in these types of settings.

Further, Schedule 21B in 1965 expanded. These changes include (1) extend certification of approval to respirators designed to protect against dusts, fumes, and mists that are significantly more toxic than lead (2) permit certification of combinations of dispersoid-filter and other types of respirators (3) revise current tests to realize accuracy and speed of testing and (4) revise the fees for inspection and testing (USBM, 1964) (Spelce, et al., 2019). This provided further regulation and protection for industrial workers&rsquo respiratory health.

&ldquoThe use of respirators continued unregulated until the Federal Coal Mine Health and Safety Act was enacted in 1969, resulting in regulations governing the certification and use of respirators in the mining industry. The Occupational Safety and Health Act, which established the Occupational Safety and Health Administration (OSHA) and the National Institute of Occupational Safety and Health (NIOSH), was promulgated in 1970&rdquo (Cohen and Birkner, 2012).

According to the Occupational Safety and Health Act of 1970, &ldquoThe Congress finds that personal injuries and illnesses arising out of work situations impose a substantial burden upon, and are a hindrance to, interstate commerce in terms of lost production, wage loss, medical expenses, and disability compensation payments&rdquo (91 st Congress, 1970). Further, the OSH Act of 1970 acknowledges a need for regulation in the safety and health of working citizens to preserve &ldquohuman resources.&rdquo The document sets standards for work places to maintain as well as formulate a regulatory body to oversee the adherence to these standards. The OSH Act not only sets standards to protect workers from physical injury and disease, but also acknowledges the necessity to protect workers from psychological harm in the workplace, such as anxiety linked to physical injury risk at work.

The OSH Act also established the National Institute for Occupational Safety and Health (NIOSH) as a research body focused on the health, safety, and empowerment of workers to create safe and healthy workplaces (NIOSH, &ldquoAbout&rdquo). OSHA and NIOSH continue to be important organizations that assist in safety recommendation and regulation in the workplace, in the area of respiratory protection as well as other areas of personal protective equipment.

&ldquoCongress created the Occupational Safety and Health Administration (OSHA) in 1970, and gave it the responsibility for promulgating standards to protect the health and safety of American workers. On February 9, 1979, 29 CFR 1910.134 gained recognition as applicable to the construction industry (44 FR 8577). Until the adoption of these standards by OSHA, most guidance on respiratory protective devices use in hazardous environments was advisory rather than mandatory&rdquo (Department of Labor, 1998). OSHA reprinted, without change of text, 29 CFR Part 1926 with the General Industry Occupational Safety and Health Standards in 29 CFR part 1910. This has since become a set of OSHA regulations (&ldquoEditorial Note,&rdquo 1978).

In 1994, the U.S. Centers for Disease Control and Prevention (CDC) released a Weeklikse verslag oor morbiditeit en sterftes entitled &ldquoGuidelines for Preventing the Transmission of Mycobacterium tuberculosis in Health-Care Facilities, 1994.&rdquo This document revises the 1990 tuberculosis (TB) guidelines in response to an outbreak in 1991 and studies from 1985 that show a multi-drug resistance to the bacterium that causes TB. These guidelines emphasize importance of healthcare professionals&rsquo proper use of personal protective equipment (PPE), specifically respiratory protection. Areas of emphasis for respiratory protection include ventilation, donning, use, and doffing. Finally, the guidelines address the need to maintain a full respiratory protection program within healthcare settings, ensuring all healthcare workers train in proper PPE use. This is of particular importance for healthcare workers that move from department to department, such as therapists, dieticians, maintenance, interns, etc.

As respiratory protection became mandatory, the importance of a tight and proper respirator fit increased. In 1995, OSHA revised the certification regulations for fit testing. This led to further research in 1996 regarding exposure in the workplace, causing researchers to use simulated workplace protection factors and exposure simulations (Cohen and Birkner, 2012 Department of Labor, 1998).

&ldquoOn 10 July 1995, the respirator certification regulation, 30 CFR 11, was replaced by 42 CFR 84 (NIOSH, 1995). The primary regulatory changes introduced by 42 CFR 84 are associated with a new approval concept, performance requirements for particulate respirator filters, and instrumentation technology. 42 CFR 84 updated filter requirements and tests to provide an assessment of the effectiveness of the filter based upon its efficiency to remove particulates of the most penetrating size from the ambient air regardless of the particulate composition and toxicity (NIOSH, 1994). The approval philosophy for filters changed from minimum requirements considered safe to breathe for various types of dust/fume/mist respirators to acceptable filter efficiency levels against laboratory generated aerosols with particles of the most penetrating size&rdquo (Spelce, et al., 2019).

The OSHA respiratory protection standard, 29 CFR 1910.134, published on January 8, 1998, replaced the agency&rsquos original standard promulgated in 1972. The rule standardized regulations for respirator use in all industries, including maritime, construction, and general industry. However, this did not include updates for the respiratory protection of the healthcare industry, which at this time still functioned under 29 CFR 1910.134 regulations. While this new development did not include the use of respirators in the healthcare setting, it did effectively progress industry, manufacturing, and construction towards a more healthy and safe work environment.

The necessity for respiratory protection in the healthcare setting came to the forefront of concern with the outbreak of tuberculosis in the 1990s. Volgens die TB Respiratory Protection Program in Health Care Facilities: Administrator&rsquos Guide, &ldquoThe use of respirators in the health care setting is a relatively new but important step forward in the efforts to prevent the transmission of tuberculosis (TB). Air-purifying respirators provide a barrier to prevent health care workers from inhaling Mycobacterium tuberculosis. The level of protection a respirator provides is determined by the efficiency of the filter material and how well the facepiece fits or seals to the health care worker&rsquos face. A number of studies have shown that surgical masks will not provide adequate protection in filtering out the TB organism. Additionally, surgical masks are not respirators and therefore, are not NIOSH-certified and do not satisfy OSHA requirements for respiratory protection&rdquo(1999).

In 2001, Congress requested the creation of a division within NIOSH to focus on the improvement and research of PPE and personal protective technologies (PPT). This division, the National Personal Protective Technology Laboratory (NPPTL) conducts scientific research, develops guidance and authoritative recommendations, disseminates information, and responds to requests for workplace health hazard evaluations.

The focus for respiratory protection research shifted drastically in the early 2000s when national tragedy struck. On September 11, 2001, terrorist attacks in New York City, Shanksville, PA, and Washington D.C. led to first responders in these cities, as well as nationally, to jump into action. The employees of NIOSH NPPTL also mobilized. According to NIOSH NPPTL employee Robert Stein,

&ldquoIf anyone ever doubted the potential for impact on a vast scale, those doubts should have been firmly dispelled the morning of September 11, 2001. I was sitting at my desk that was in building 02 at the time when I got a phone call from one of my colleagues who was off site that day. He said, &ldquoThey are flying planes into the World Trade Center.&rdquo I had already heard the news that an airplane had hit one of the World Trade Center towers, but his was the first voice to identify and call it out as an intentional act. Things started to develop rapidly after that. The personnel at the newly formed lab gathered to develop response plans. Response planning quickly evolved into planning for communication contingencies as we got word that government sites would be evacuated. Obedient to the directions to leave the work site, several of us mustered at the nearby home of one of our colleagues to finish up with our what-if&rsquos and how-to-get-in-touch-with&rsquos. It was an eerie ride home, very confusing to the senses travelling under the beautiful blue skies of a perfect late summer day, but with such serious and unknown threats seemingly looming everywhere.

Even while there was still a ban on commercial flights, NPPTL sent two individuals to the World Trade Center site to help with respiratory protection issues as they were occurring. Not only were they able to provide immediate assistance at the World Trade Center site, but the first-hand experience they gained observing the difficulties encountered trying to provide respiratory protection to such a large number of first responders, recovery workers, law enforcement personnel, and other workers involved in the response helped to shape technical and policy decisions for months and years afterwards. The entire lab dedicated long hours in order to complete new statements of standard for respirator types with protections appropriate to protect first-responders involved in terrorist incidents, and then approve respirators so those new standards would actually result in providing appropriate respiratory protection for those workers.&rdquo

Following the terrorist attacks on September 11, 2001, the PPE used by first responders became a top priority for NIOSH, as it emphasized the PPE needed to protect those risking their own lives in order to save lives. In the weeks after September 11, the New York City Fire Department&rsquos Bureau of Health Services (FDNY-BHS) and NIOSH launched a collaborative study. This study researched the effectiveness of personal protective equipment, including respiratory protection, and the occupational hazards and exposures of these first responders. The results indicated that many firefighters did not use adequate respiratory protection during the first week of the rescue/recovery operation (MMWR, 2002).

First Responders using inconsistent respiratory protection practices, photo courtesy of Shutterstock

A study researched seven first responders to the attacks in New York on September 11 and their exposure to the dust at Ground Zero on September 11 or September 12. All were non-smokers or had only smoked in their distant past. The results of the study showed that all seven first responders developed some form of lung disease after their exposure to the dust at Ground Zero (Wu, et al., 2010).

Research suggests the rate of respiratory illness was so high due to a lack in use of respiratory protection. According to firsthand accounts by P.J. Lioy and M. Gochfeld in their 2002 article &ldquoLessons Learned on Environmental, Occupational, and Residential Exposures from the Attack on the World Trade Center,&rdquo an alarmingly low number of individuals were using respiratory protection in the field at Ground Zero, and many that had respiratory protection were not wearing it (Crane et al., 2012).

The work to improve respiratory protection and subsequent guidance on use of respiratory protection has continued well after 2001. In 2005, NIOSH released its &ldquoInterim Guidance on the Use of Chemical, Biological, Radiological, and Nuclear (CBRN) Full Facepiece, Air-Purifying Respirators/Gas Masks Certified under 42 CFR Part 84.&rdquo According to NIOSH NPPTL employee, Jeff Peterson, &ldquoI would certainly say that one of the biggest accomplishments in the field of respiratory protection is the development of the voluntary NIOSH CBRN requirements.&rdquo

The CBRN requirements answered the need of emergency responders to maintain knowledge of PPE in a time of increased global terrorism. This interim guidance document provided guidelines for the selection and use of NIOSH-approved full facepiece, tight fitting, non-powered, air-purifying respirators (APR) for protection against quantified CBRN agents.

Following September of 2001, NIOSH and The RAND Corporation developed multiple volume reports dedicated to protecting emergency responders (Szalajda, 2008). NIOSH also developed three CBRN standards. The first requires that self-contained breathing apparatus (SCBA) meet CBRN protection standards because it &ldquois used where the respiratory threat level is unknown or known to be immediately dangerous to life and health (IDLH)&rdquo (Szalajda, 2008).

Secondly, NIOSH developed a standard for a full-facepiece, air-purifying respirator. &ldquoThe CBRN APR full-facepiece respirator is widely used by multiple responder groups. It provides a lower level of protection than the SCBA and its use is generally allowed once conditions are understood and exposures are determined to be at levels below those considered to be IDLH&rdquo (Szalajda, 2008).

The third priority was that air-purifying and self-contained escape respirators meet CBRN standards. This enabled a more general workforce, rather than those solely focused on first responders, to use PPE safely in a CBRN terrorist incident. As addressed by Deputy Director Jon Szalajda, NIOSH NPPTL &ldquocontinues to develop criteria for additional types of respirators in response to responders&rsquo needs for appropriate respiratory protection against the anticipated hazards faced in performing rescue and recovery operations resulting from viable terrorist threats, as well as HAZMAT incidents&rdquo (Szalajda, 2008).

Nurse demonstrating the donning of PPE worn by healthcare providers when treating an Ebola patient in a medical intensive care unit (ICU), photo courtesy of the CDC

In 2015, the American National Standard Institute (ANSI) standard Z88.2 updated the standard practice for respiratory protection. The Z88 Committee established the standard in 1969, with revisions in 1989 and 1992. The Z88.2 standard &ldquosets forth minimally accepted practices for occupational respirator use provides information and guidance on the proper selection, use and maintenance of respirators, and contains requirements for establishing, implementing and evaluating respirator programs. The standard covers the use of respirators to protect persons against the inhalation of harmful air contaminants and against oxygen-deficient atmospheres in the workplace&rdquo (ANZ88.2-2015, 1.1).

From 2014-2016, a global epidemic of the Ebola virus disease spread to the United States. During this time, proper PPE use in healthcare settings became a paramount concern, as the highly contagious virus spreads from contact with blood and other bodily fluids. Because of the virus&rsquo highly contagious nature, the CDC recommended the use of a NIOSH-approved N95 respirator, or higher level of particulate filtration, or a powered air-purifying (PAPR) when caring for a Person Under Investigation (PUI) for the Ebola virus disease or a person with a confirmed case of the virus. Further, the CDC released guidelines for the disposal, cleaning, and disinfection based on the type of respirator worn by a healthcare worker when treating an Ebola patient. (Frequently Asked Questions, Ebola, 2018).

In 2019, &ldquoNIOSH NPPTL continues to provide national and world leadership in respirator approval, research, and standards development to support the workers who rely on respiratory protection,&rdquo states NPPTL Director, Dr. Maryann D&rsquoAlessandro. Such research includes understanding respirator comfort, fit, and usability stockpiling of respirators and rapid respiratory protection training in healthcare settings.


Voetnote

1. &thinspSee generally Nighttime Glare and Driving Performance, Report to Congress, p. ii (2007), National Highway Traffic Safety Administration, Department of Transportation [hereinafter &ldquo2007 Report to Congress&rdquo].

2. &thinsp2007 Report to Congress, pp. iv, 11-14. See also, e.g., John D. Bullough et al. 2003. An Investigation of Headlamp Glare: Intensity, Spectrum and Size, DOT HS 809 672. Washington, DC: U.S. Department of Transportation, National Highway Traffic Safety Administration [hereinafter &ldquoInvestigation of Headlamp Glare&rdquo], p. 1 (&ldquoIt is almost always the case that headlamp glare reduces visual performance under driving conditions relative to the level of performance achievable without glare.&rdquo).

3. &thinspJohn D. Bullough et al. 2008. Nighttime Glare and Driving Performance: Research Findings, DOT HS 811 043. Washington, DC: U.S. Department of Transportation, National Highway Traffic Safety Administration, p. I-4.

4. &thinspId., bl. 33. But see Investigation of Headlamp Glare, p. 3 (&ldquoVery few studies have probed the interactions between discomfort and disability glare, or indeed any driving-performance related factors . . . .&rdquo).

5. &thinsp2007 Report to Congress, p. iv.

8. &thinspThe upper beam photometric requirements are set out in Table XVIII the lower beam photometric requirements are set out in Table XIX.

9. &thinspThe Society of Automotive Engineers (now SAE International). SAE is an organization that develops technical standards based on best practices.

10. &thinspSien 54 FR 20066 (May 9, 1989) (explaining history of photometric requirements).

11. &thinsp43 FR 32416 (July 27, 1978).

12. &thinsp58 FR 3856 (Jan. 12, 1993).

13. &thinsp50 FR 42735 (Oct. 22, 1985) (Request for Comments).

14. &thinsp52 FR 30393 (Aug. 14, 1987) (Request for Comments).

15. &thinsp54 FR 20084 (May 9, 1989).

16. &thinspSee generally 66 FR 49594, 49596 (Sept. 28, 2001).

20. &thinspSafe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users, Public Law 109-59, Sec. 2015 (2005).

21. &thinspPerel & Singh. 2004. Drivers' Perceptions of Headlamp Glare from Oncoming and Following Vehicles, DOT HS 809 669. Washington, DC: National Highway Traffic Safety Administration.

22. &thinsp68 FR 7101 (Feb. 12, 2003) 70 FR 40974 (July 15, 2005) (withdrawn).

24. &thinspSee generally Summary of Headlamp Research at NHTSA, DOT HS 811 006. Washington, DC: National Highway Traffic Safety Administration (2008).

25. &thinspMichael J. Flannagan & John M. Sullivan. 2011. Feasibility of New Approaches for the Regulation of Motor Vehicle Lighting Performance. Washington, DC: National Highway Traffic Safety Administration. Sien ook 77 FR 40843 (July 11, 2012) (request for comments on the report).

26. &thinspElizabeth Mazzae, G.H. Scott Baldwin, Adam Andrella, & Larry A. Smith. 2015. Adaptive Driving Beam Headlighting System Glare Assessment, DOT HS 812 174. Washington, DC: National Highway Traffic Safety Administration.

27. &thinspSAE J3069 JUN2016, Sec. 3.1.

28. &thinspSAE J3069JUN 2016, pp. 1-2.

30. &thinspJohn D. Bullough, Nicholas P. Skinner, Yukio Akashi, & John Van Derlofske. 2008. Investigation of Safety-Based Advanced Forward-Lighting Concepts to Reduce Glare, DOT HS 811 033. Washington, DC: National Highway Traffic Safety Administration, p. 63. See also, e.g., Mary Lynn Mefford, Michael J. Flannagan & Scott E. Bogard. 2006. Real-World Use of High-Beam Headlamps, UMTRI-2006-11. University of Michigan, Transportation Research Institute, p. 6 (finding that &ldquohigh-beam headlamp use is low . . . consistent with previous studies that used different methods&rdquo).

31. &thinspInvestigation of Safety-Based Advanced Forward-Lighting Concepts to Reduce Glare, DOT HS 811 033, p. 63.

32. &thinspMichael J. Flannagan & John M. Sullivan. 2011. Preliminary Assessment of The Potential Benefits of Adaptive Driving Beams, UMTRI-2011-37. University of Michigan, Transportation Research Institute, p. 2.

33. &thinsp2007 Report to Congress, p. 6. A recent study by the Insurance Institute for Highway Safety noted that &ldquo[t]wenty-nine percent of all fatalities during 2014 occurred in the dark on unlit roads. Although factors such as alcohol impairment and fatigue contributed to many of these crashes, poor visibility likely also played a role.&rdquo Ian J. Reagan, Matthew L. Brumbelow & Michael J. Flannagan. 2016. The Effects of Rurality, Proximity of Other Traffic, and Roadway Curvature on High Beam Headlamp Use Rates. Insurance Institute for Highway Safety, pp. 2-3 (citations omitted). Sien ook Feasibility Study, p. 5 (&ldquoThe conclusion of our analysis was that pedestrian crashes were by far the most prevalent type of crash that could in principle be addressed by headlighting.&rdquo). See Appendix A for an analysis that roughly estimates the target population that could benefit from ADB technology.

34. &thinspLetter from Thomas Zorn, Volkswagen Group of America to Dr. Mark Rosekind, Administrator, NHTSA, Petition for Temporary Exemption from FMVSS 108 (October 10, 2016), pp. 1, 7.

35. &thinspSee, e.g., SAE J3069 (&ldquoHowever, in the United States it is unclear how ADB would be treated under the current Federal Motor Vehicle Safety Standard (FMVSS) 108.&rdquo).

36. &thinspLetter from Tom Stricker, Toyota Motor North America, Inc. to David Strickland (Mar. 29, 2013).

37. &thinspRegulation 48 defines AFS as &ldquoa lighting device type-approved according to Regulation No. 123, providing beams with differing characteristics for automatic adaptation to varying conditions of use of the dipped-beam (passing-beam) and, if it applies, the main-beam (driving-beam).&rdquo

38. &thinspSien Annex 12 to ECE R48.

39. &thinspMore specifically, they regulate glare that comes directly from the headlamps (as opposed to headlamp glare that reflects off of, say, the road surface).

40. &thinsp1U, 1.5L to L (700 cd maximum) 0.5U, 1.5L to L (1,000 cd maximum).

41. &thinsp1.5U, 1R to R (1,400 cd maximum) 0.5U, 1R to 3R (2,700 cd maximum).

42. &thinspCandela is a unit of measurement of luminous intensity. Candela is a measure of the amount of light coming from a source per unit solid angle.

43. &thinspIlluminance is the amount of light falling on a surface. The unit of measurement for illuminance is lux. Lux is a unit measurement of illuminance describing the amount of light falling on a surface, whereas candela is a measure of the luminous intensity produced by a light source in a particular direction per solid angle. A measure of luminous intensity in candela can be converted to a lux equivalent, given a specified distance.

44. &thinspA photometer, or illuminance meter, is an instrument that measures light.

45. &thinspThe motorcycle was not fitted with photometers because of time constraints and equipment availability. Illuminance receptors were located on a vehicle positioned adjacent to the motorcycle this vehicle's lamps remained off to ensure that the ADB-equipped vehicle was responding only to the motorcycle's lamps.